Table of Contents
Algebraic Data Types
Return to Programming Topics, X, Kotlin glossary, Programming glossary, Kotlin
- Snippet from Wikipedia: Algebraic data type
In computer programming, especially in functional programming and type theory, an algebraic data type (ADT) is a composite data type—a type formed by combining other types.
An algebraic data type is defined by two key constructions: a sum and a product. These are sometimes referred to as "OR" and "AND" types.
A sum type is a choice between possibilities. The value of a sum type can match one of several defined variants. For example, a type representing the state of a traffic light could be either
Red
,Amber
, orGreen
. A shape type could be either aCircle
(which stores a radius) or aSquare
(which stores a width). In formal terms, these variants are known as tagged unions or disjoint unions. Each variant has a name, called a constructor, which can also carry data. Enumerated types are a simple form of sum type where the constructors carry no data.A product type combines types together. A value of a product type will contain a value for each of its component types. For example, a
Point
type might be defined to contain anx
coordinate (an integer) and ay
coordinate (also an integer). Formal examples of product types include tuples and records. The set of all possible values of a product type is the Cartesian product of the sets of its component types.Values of algebraic data types are typically handled using pattern matching. This feature allows a programmer to check which constructor a value was made with and extract the data it contains in a convenient and type-safe way.
External links
Fair Use Sources
Programming: Programming languages
Variables and Data Types, Control Structures, Functions and Methods, Object-Oriented Programming (OOP), Functional Programming, Procedural Programming, Event-Driven Programming, Concurrent and Parallel Programming, Error Handling and Debugging, Memory Management, Recursion, Algorithms, Data Structures, Design Patterns, Software Development Life Cycle (SDLC), Version Control Systems, Database Programming, Web Development, Mobile App Development, Game Development, Machine Learning and AI Programming, Network Programming, API Development, Security in Programming, Testing and Quality Assurance, User Interface and User Experience Design, Scripting Languages, Assembly Language, High-Level Programming Languages, Low-Level Programming Languages, Compiler Design, Interpreter Design, Garbage Collection, Regular Expressions, Graphical User Interface (GUI) Programming, Command Line Interface Development, Cross-Platform Development, Cloud Computing in Programming, Blockchain Programming, IoT Programming, Embedded Systems Programming, Microservices Architecture, Serverless Architecture, Big Data Technologies, Data Visualization, Data Mining and Analysis, Natural Language Processing (NLP), Computer Graphics Programming, Virtual Reality (VR) Development, Augmented Reality (AR) Development, Cryptography in Programming, Distributed Systems, Real-Time Systems Programming, Operating System Development, Compiler and Interpreter Development, Quantum Computing, Software Project Management, Agile Methodologies, DevOps Practices, Continuous Integration and Continuous Deployment (CI/CD), Software Maintenance and Evolution, Software Licensing, Open Source Development, Accessibility in Software Development, Internationalization and Localization, Performance Optimization, Scalability Techniques, Code Refactoring, Design Principles, API Design, Data Modeling, Software Documentation, Peer-to-Peer Networking, Socket Programming, Front-End Development, Back-End Development, Full Stack Development, Secure Coding Practices, Code Reviews, Unit Testing, Integration Testing, System Testing, Functional Programming Paradigms, Imperative Programming, Declarative Programming, Software Architecture, Cloud-Native Development, Infrastructure as Code (IaC), Ethical Hacking for Developers, Artificial Intelligence Ethics in Programming, Software Compliance and Standards, Software Auditing, Debugging Tools and Techniques, Code Optimization Techniques, Software Deployment Strategies, End-User Computing, Computational Thinking, Programming Logic and Techniques, Advanced Data Management
Agile, algorithms, APIs, asynchronous programming, automation, backend, CI/CD, classes, CLI, client-side, cloud (Cloud Native-AWS-Azure-GCP-IBM Cloud-IBM Mainframe-OCI), comments, compilers, concurrency, conditional expressions, containers, control flow, databases, data manipulation, data persistence, data science, data serialization, data structures, dates and times, debugging, dependency injection, design patterns, DevOps, distributed software, Docker, error handling, file I/O, frameworks, frontend, functions, functional programming, GitHub, history, Homebrew, IDEs, installation, JetBrains, JSON, JSON Web Token (JWT), K8S, lambdas, language spec, libraries, linters, Linux, logging, macOS, methods, ML, microservices, mobile dev, modules, monitoring, multi-threaded, network programming, null, numbers, objects, object-oriented programming, observability, OOP, ORMs, packages, package managers, performance, programmers, programming, reactive, refactoring, reserved words, REST APIs, RHEL, SDK, secrets, security, serverless, server-side, Snapcraft, SQL, StackOverflow, standards, standard library, statements, scope, scripting, syntax, systems programming, TDD, testing, tools, type system, web dev, variables, versions, Ubuntu, unit testing, Windows; topics-courses-books-docs. (navbar_programming - see also navbar_variables, navbar_programming_libraries, navbar_data_structures, navbar_algorithms, navbar_software_architecture, navbar_agile)
Cloud Monk is Retired ( for now). Buddha with you. © 2025 and Beginningless Time - Present Moment - Three Times: The Buddhas or Fair Use. Disclaimers
SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.