floating-point_arithmetic

Floating-point arithmetic

Return to Data Structures

Also called: FP

Snippet from Wikipedia: Floating-point arithmetic

In computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers.: 3 : 10  For example, 12.345 is a floating-point number in base ten with five digits of precision:

However, unlike 12.345, 12.3456 is not a floating-point number in base ten with five digits of precision—it needs six digits of precision; the nearest floating-point number with only five digits is 12.346. In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common.

Floating-point arithmetic operations, such as addition and division, approximate the corresponding real number arithmetic operations by rounding any result that is not a floating-point number itself to a nearby floating-point number.: 22 : 10  For example, in a floating-point arithmetic with five base-ten digits of precision, the sum 12.345 + 1.0001 = 13.3451 might be rounded to 13.345.

The term floating point refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation.

A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-point arithmetic is often used to allow very small and very large real numbers that require fast processing times. The result of this dynamic range is that the numbers that can be represented are not uniformly spaced; the difference between two consecutive representable numbers varies with their exponent.

Over the years, a variety of floating-point representations have been used in computers. In 1985, the IEEE 754 Standard for Floating-Point Arithmetic was established, and since the 1990s, the most commonly encountered representations are those defined by the IEEE.

The speed of floating-point operations, commonly measured in terms of FLOPS, is an important characteristic of a computer system, especially for applications that involve intensive mathematical calculations.

A floating-point unit (FPU, colloquially a math coprocessor) is a part of a computer system specially designed to carry out operations on floating-point numbers.

Data Structures: Array, Linked List, Stack, Queue, Binary Tree, Binary Search Tree, Heap, Hash Table, Graph, Trie, Skip List, Red-Black Tree, AVL Tree, B-Tree, B+ Tree, Splay Tree, Fibonacci Heap, Disjoint Set, Adjacency Matrix, Adjacency List, Circular Linked List, Doubly Linked List, Priority Queue, Dynamic Array, Bloom Filter, Segment Tree, Fenwick Tree, Cartesian Tree, Rope, Suffix Array, Suffix Tree, Ternary Search Tree, Radix Tree, Quadtree, Octree, KD Tree, Interval Tree, Sparse Table, Union-Find, Min-Max Heap, Binomial Heap, And-Or Graph, Bit Array, Bitmask, Circular Buffer, Concurrent Data Structures, Content Addressable Memory, Deque, Directed Acyclic Graph (DAG), Edge List, Eulerian Path and Circuit, Expression Tree, Huffman Tree, Immutable Data Structure, Indexable Skip List, Inverted Index, Judy Array, K-ary Tree, Lattice, Linked Hash Map, Linked Hash Set, List, Matrix, Merkle Tree, Multimap, Multiset, Nested Data Structure, Object Pool, Pairing Heap, Persistent Data Structure, Quad-edge, Queue (Double-ended), R-Tree, Radix Sort Tree, Range Tree, Record, Ring Buffer, Scene Graph, Scapegoat Tree, Soft Heap, Sparse Matrix, Spatial Index, Stack (Min/Max), Suffix Automaton, Threaded Binary Tree, Treap, Triple Store, Turing Machine, Unrolled Linked List, Van Emde Boas Tree, Vector, VList, Weak Heap, Weight-balanced Tree, X-fast Trie, Y-fast Trie, Z-order, Zero-suppressed Decision Diagram, Zigzag Tree

Data Structures Fundamentals - Algorithms Fundamentals, Algorithms, Data Types; Primitive Types (Boolean data type, Character (computing), Floating-point arithmetic, Single-precision floating-point format - Double-precision floating-point format, IEEE 754, Category:Floating point types, Fixed-point arithmetic, Integer (computer science), Reference (computer science), Pointer (computer programming), Enumerated type, Date Time);

Composite Types or Non-Primitive Types: Array data structure, String (computer science) (Array of characters), Record (computer science) (also called Struct (C programming language)), Union type (Tagged union, also called Variant type, Variant record, Discriminated union, or Disjoint union);

Abstract Data Types: Container (data structure), List (abstract data type), Tuple, Associative array (also called Map, Multimap, Set (abstract data type), Multiset (abstract data type) (also called Multiset (bag)), Stack (abstract data type), Queue (abstract data type), (e.g. Priority queue), Double-ended queue, Graph (data structure) (e.g. Tree (data structure), Heap (data structure))

Data Structures and Algorithms, Data Structures Syntax, Data Structures and OOP - Data Structures and Design Patterns, Data Structures Best Practices, Data Structures and Containerization, Data Structures and IDEs (IntelliSense), Data Structures and Development Tools, Data Structures and Compilers, Data Structures and Data Science - Data Structures and DataOps, Machine Learning Data Structures - Data Structures and MLOps, Deep Learning Data Structures, Functional Data Structures, Data Structures and Concurrency - Data Structures and Parallel Programming, Data Structure Libraries, Data Structures History, Data Structures Bibliography (Grokking Data Structures), Data Structures Courses, Data Structures Glossary, Data Structures Topics, Data Structures Research, Data Structures GitHub, Written in Data Structures, Data Structures Popularity, Data Structures Awesome. (navbar_data_structures - see also navbar_cpp_containers, navbar_math_algorithms, navbar_data_algorithms, navbar_design_patterns, navbar_software_architecture)


© 1994 - 2024 Cloud Monk Losang Jinpa or Fair Use. Disclaimers

SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.


floating-point_arithmetic.txt · Last modified: 2024/04/28 03:44 (external edit)