communicating_sequential_processes

Communicating sequential processes

Return to Tony Hoare, Concurrency

Snippet from Wikipedia: Communicating sequential processes

In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels. CSP was highly influential in the design of the occam programming language and also influenced the design of programming languages such as Limbo, RaftLib, Erlang, Go, Crystal, and Clojure's core.async.

CSP was first described in a 1978 article by Tony Hoare, but has since evolved substantially. CSP has been practically applied in industry as a tool for specifying and verifying the concurrent aspects of a variety of different systems, such as the T9000 Transputer, as well as a secure e-commerce system. The theory of CSP itself is also still the subject of active research, including work to increase its range of practical applicability (e.g., increasing the scale of the systems that can be tractably analyzed).

Concurrency: Concurrency Programming Best Practices, Concurrent Programming Fundamentals, Parallel Programming Fundamentals, Asynchronous I/O, Asynchronous programming (Async programming, Asynchronous flow control, Async / await), Asymmetric Transfer, Akka, Atomics, Busy waiting, Channels, Concurrent, Concurrent system design, Concurrency control (Concurrency control algorithms‎, Concurrency control in databases, Atomicity (programming), Distributed concurrency control, Data synchronization), Concurrency pattern, Concurrent computing, Concurrency primitives, Concurrency problems, Concurrent programming, Concurrent algorithms, Concurrent programming languages, Concurrent programming libraries‎, Java Continuations, Coroutines, Critical section, Deadlocks, Decomposition, Dining philosophers problem, Event (synchronization primitive), Exclusive or, Execution model (Parallel execution model), Fibers, Futures, Inter-process communication, Linearizability, Lock (computer science), Message passing, Monitor (synchronization), Computer multitasking (Context switch, Pre-emptive multitasking - Preemption (computing), Cooperative multitasking - Non-preemptive multitasking), Multi-threaded programming, Multi-core programming, Multi-threaded, Mutual exclusion, Mutually exclusive events, Mutex, Non-blocking algorithm (Lock-free), Parallel programming, Parallel computing, Process (computing), Process state, Producer-consumer problem (Bounded-buffer problem), Project Loom, Promises, Race conditions, Read-copy update (RCU), Readers–writer lock, Readers–writers problem, Recursive locks, Reducers, Reentrant mutex, Scheduling (computing)‎, Semaphore (programming), Seqlock (Sequence lock), Serializability, Shared resource, Sleeping barber problem, Spinlock, Synchronization (computer science), System resource, Thread (computing), Tuple space, Volatile (computer programming), Yield (multithreading), Concurrency bibliography, Manning Concurrency Async Parallel Programming Series, Concurrency glossary, Awesome Concurrency, Concurrency topics, Functional programming. (navbar_concurrency - see also navbar_async, navbar_python_concurrency, navbar_golang_concurrency, navbar_java_concurrency)


Cloud Monk is Retired (for now). Buddha with you. © 2005 - 2024 Losang Jinpa or Fair Use. Disclaimers

SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.


communicating_sequential_processes.txt · Last modified: 2022/09/28 00:39 by 127.0.0.1