User Tools

Site Tools


heap_memory

Heap (programming)

Return to Memory management, Heap memory vs. Stack memory, Heap (data structure), Heap or Free store (Heap-based memory allocation), Stack (Call stack - Stack-based memory allocation - Stack (abstract data type) - LIFO (computing) - Stack frame - Stack unwinding), Data Structures

The task of fulfilling an allocation request consists of locating a block of unused memory of sufficient size. Memory requests are satisfied by allocating portions from a large pool[note 2] of memory called the heap[note 3] or free store. At any given time, some parts of the heap are in use, while some are “free” (unused) and thus available for future allocations.

Several issues complicate the implementation, such as external fragmentation, which arises when there are many small gaps between allocated memory blocks, which invalidates their use for an allocation request. The allocator's metadata can also inflate the size of (individually) small allocations. This is often managed by chunking. The memory management system must track outstanding allocations to ensure that they do not overlap and that no memory is ever “lost” (i.e. that there are no “memory leaks”).

Snippet from Wikipedia: Memory management

Memory management is a form of resource management applied to computer memory. The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed. This is critical to any advanced computer system where more than a single process might be underway at any time.

Several methods have been devised that increase the effectiveness of memory management. Virtual memory systems separate the memory addresses used by a process from actual physical addresses, allowing separation of processes and increasing the size of the virtual address space beyond the available amount of RAM using paging or swapping to secondary storage. The quality of the virtual memory manager can have an extensive effect on overall system performance. The system allows a computer to appear as if it may have more memory available than physically present, thereby allowing multiple processes to share it.

In some operating systems, e.g. OS/360 and successors, memory is managed by the operating system. In other operating systems, e.g. Unix-like operating systems, memory is managed at the application level.

Memory management within an address space is generally categorized as either manual memory management or automatic memory management.

Memory management: Dynamic memory management, C language memory management, C dynamic memory allocation - C memory (malloc, realloc, calloc, C free, mimalloc), C++ memory (automatic storage duration, C++ auto, RAII), C# memory, Binary prefixes (kilo-mega-giga-tera-peta-exa-zetta-yotta), Manual memory management, Memory management (operating systems) (Linux memory - UNIX memory, Android memory, IBM mainframe memory, iOS memory, macOS memory, Windows memory), Memory: Memory address, Address space, Memory allocation - Memory allocator, Bash memory, Memory deallocation - Deallocation, Memory debugger (Memwatch, mtrace), Memory diffusion, Dynamic memory, Memory fence (Memory barrier), Memory fragmentation] - Fragmentation, Free list, Garbage collection - Garbage collector, Golang memory, Heap or Free store (Heap-based memory allocation), Stack (Call stack - Stack-based memory allocation - Stack (abstract data type) - LIFO (computing) - Stack frame - Stack unwinding), JVM memory (Java memory - Kotlin memory - Scala memory), Memory leak, Memory model, Memory paging, Out of memory, Page (computer memory), Pointers, C language pointers, Automatic pointer, Pointer swizzling, Memory pool, Memory protection, Physical memory, PowerShell memory, Python memory, RAM, Memory reference (Reference counting - Soft reference - Weak reference), Resource allocation (Resource Acquisition Is Initialization - RAII), Resource leak, Rust memory, Memory segmentation, Memory utilization, Shared memory, Static variable - Automatic variable, Virtual memory, Virtual address space. Memory management. (navbar_memory_management. See also navbar_memory or navbar_data_storage)

Data Structures: Array, Linked List, Stack, Queue, Binary Tree, Binary Search Tree, Heap, Hash Table, Graph, Trie, Skip List, Red-Black Tree, AVL Tree, B-Tree, B+ Tree, Splay Tree, Fibonacci Heap, Disjoint Set, Adjacency Matrix, Adjacency List, Circular Linked List, Doubly Linked List, Priority Queue, Dynamic Array, Bloom Filter, Segment Tree, Fenwick Tree, Cartesian Tree, Rope, Suffix Array, Suffix Tree, Ternary Search Tree, Radix Tree, Quadtree, Octree, KD Tree, Interval Tree, Sparse Table, Union-Find, Min-Max Heap, Binomial Heap, And-Or Graph, Bit Array, Bitmask, Circular Buffer, Concurrent Data Structures, Content Addressable Memory, Deque, Directed Acyclic Graph (DAG), Edge List, Eulerian Path and Circuit, Expression Tree, Huffman Tree, Immutable Data Structure, Indexable Skip List, Inverted Index, Judy Array, K-ary Tree, Lattice, Linked Hash Map, Linked Hash Set, List, Matrix, Merkle Tree, Multimap, Multiset, Nested Data Structure, Object Pool, Pairing Heap, Persistent Data Structure, Quad-edge, Queue (Double-ended), R-Tree, Radix Sort Tree, Range Tree, Record, Ring Buffer, Scene Graph, Scapegoat Tree, Soft Heap, Sparse Matrix, Spatial Index, Stack (Min/Max), Suffix Automaton, Threaded Binary Tree, Treap, Triple Store, Turing Machine, Unrolled Linked List, Van Emde Boas Tree, Vector, VList, Weak Heap, Weight-balanced Tree, X-fast Trie, Y-fast Trie, Z-order, Zero-suppressed Decision Diagram, Zigzag Tree

Data Structures Fundamentals - Algorithms Fundamentals, Algorithms, Data Types; Primitive Types (Boolean data type, Character (computing), Floating-point arithmetic, Single-precision floating-point format - Double-precision floating-point format, IEEE 754, Category:Floating point types, Fixed-point arithmetic, Integer (computer science), Reference (computer science), Pointer (computer programming), Enumerated type, Date Time);

Composite Types or Non-Primitive Types: Array data structure, String (computer science) (Array of characters), Record (computer science) (also called Struct (C programming language)), Union type (Tagged union, also called Variant type, Variant record, Discriminated union, or Disjoint union);

Abstract Data Types: Container (data structure), List (abstract data type), Tuple, Associative array (also called Map, Multimap, Set (abstract data type), Multiset (abstract data type) (also called Multiset (bag)), Stack (abstract data type), Queue (abstract data type), (e.g. Priority queue), Double-ended queue, Graph (data structure) (e.g. Tree (data structure), Heap (data structure))

Data Structures and Algorithms, Data Structures Syntax, Data Structures and OOP - Data Structures and Design Patterns, Data Structures Best Practices, Data Structures and Containerization, Data Structures and IDEs (IntelliSense), Data Structures and Development Tools, Data Structures and Compilers, Data Structures and Data Science - Data Structures and DataOps, Machine Learning Data Structures - Data Structures and MLOps, Deep Learning Data Structures, Functional Data Structures, Data Structures and Concurrency - Data Structures and Parallel Programming, Data Structure Libraries, Data Structures History, Data Structures Bibliography (Grokking Data Structures), Data Structures Courses, Data Structures Glossary, Data Structures Topics, Data Structures Research, Data Structures GitHub, Written in Data Structures, Data Structures Popularity, Data Structures Awesome. (navbar_data_structures - see also navbar_cpp_containers, navbar_math_algorithms, navbar_data_algorithms, navbar_design_patterns, navbar_software_architecture)


Cloud Monk is Retired (for now). Buddha with you. © 2005 - 2024 Losang Jinpa or Fair Use. Disclaimers

SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.


heap_memory.txt · Last modified: 2022/09/28 19:03 by 127.0.0.1