Return to Performance
In computing, performance benchmarks are standardized tests used to evaluate and compare the performance of hardware and software systems. They provide objective metrics that help determine how well a system performs specific tasks or functions. Benchmarks are essential for assessing system capabilities, optimizing performance, and making informed decisions about upgrades and configurations.
Performance benchmarks can be categorized into various types, each focusing on different aspects of system performance:
Benchmarks use various metrics to quantify system performance, including:
Performance benchmarks are used in various contexts, including:
Numerous tools and software applications are available for conducting performance benchmarks, including:
Benchmarking can present challenges and limitations, such as:
Performance tuning involves adjusting system settings and configurations to achieve optimal performance based on benchmark results. By analyzing benchmark data, system administrators and developers can identify areas for improvement and implement changes to enhance overall performance. Performance tuning is an iterative process that may require multiple rounds of benchmarking and adjustments.
Industry standards and benchmarks play a key role in ensuring consistency and comparability across different systems and vendors. Organizations such as SPEC and WPC (World Programming Championship) develop and maintain standardized benchmark tests that are widely recognized and used within the industry.
As technology evolves, benchmarking methodologies and tools continue to advance. Future trends may include:
Benchmarking results have a significant impact on decision-making in computing, influencing choices related to hardware purchases, software development, and system configurations. Accurate and reliable benchmarks provide valuable insights that help organizations and individuals make informed decisions to achieve desired performance outcomes.
To achieve meaningful and accurate benchmarking results, consider the following best practices:
Benchmarking is the practice of comparing business processes and performance metrics to industry bests and best practices from other companies. Dimensions typically measured are quality, time and cost.
Benchmarking is used to measure performance using a specific indicator (cost per unit of measure, productivity per unit of measure, cycle time of x per unit of measure or defects per unit of measure) resulting in a metric of performance that is then compared to others.
Also referred to as "best practice benchmarking" or "process benchmarking", this process is used in management in which organizations evaluate various aspects of their processes in relation to best-practice companies' processes, usually within a peer group defined for the purposes of comparison. This then allows organizations to develop plans on how to make improvements or adapt specific best practices, usually with the aim of increasing some aspect of performance. Benchmarking may be a one-off event, but is often treated as a continuous process in which organizations continually seek to improve their practices.
In project management benchmarking can also support the selection, planning and delivery of projects.
In the process of best practice benchmarking, management identifies the best firms in their industry, or in another industry where similar processes exist, and compares the results and processes of those studied (the "targets") to one's own results and processes. In this way, they learn how well the targets perform and, more importantly, the business processes that explain why these firms are successful. According to National Council on Measurement in Education, benchmark assessments are short assessments used by teachers at various times throughout the school year to monitor student progress in some area of the school curriculum. These also are known as interim government.
In 1994, one of the first technical journals named Benchmarking was published.
Performance: Systems performance, Systems performance bibliography, Systems Performance Outline: (Systems Performance Introduction, Systems Performance Methodologies, Systems Performance Operating Systems, Systems Performance Observability Tools, Systems Performance Applications, Systems Performance CPUs, Systems Performance Memory, Systems Performance File Systems, Systems Performance Disks, Systems Performance Network, Systems Performance Cloud Computing, Systems Performance Benchmarking, Systems Performance perf, Systems Performance Ftrace, Systems Performance BPF, Systems Performance Case Study), Accuracy, Algorithmic efficiency (Big O notation), Algorithm performance, Amdahl's Law, Android performance, Application performance engineering, Async programming, Bandwidth, Bandwidth utilization, bcc, Benchmark (SPECint and SPECfp), BPF, bpftrace, Performance bottleneck (“Hotspots”), Browser performance, C performance, C Plus Plus performance | C++ performance, C Sharp performance | performance, Cache hit, Cache performance, Capacity planning, Channel capacity, Clock rate, Clojure performance, Compiler performance (Just-in-time (JIT) compilation - Ahead-of-time compilation (AOT), Compile-time, Optimizing compiler), Compression ratio, Computer performance, Concurrency, Concurrent programming, Concurrent testing, Container performance, CPU cache, CPU cooling, CPU cycle, CPU overclocking (CPU boosting, CPU multiplier), CPU performance, CPU speed, CPU throttling (Dynamic frequency scaling - Dynamic voltage scaling - Automatic underclocking), CPU time, CPU load - CPU usage - CPU utilization, Cycles per second (Hz), CUDA (Nvidia), Data transmission time, Database performance (ACID-CAP theorem, Database sharding, Cassandra performance, Kafka performance, IBM Db2 performance, MongoDB performance, MySQL performance, Oracle Database performance, PostgreSQL performance, Spark performance, SQL Server performance), Disk I/O, Disk latency, Disk performance, Disk speed, Disk usage - Disk utilization, Distributed computing performance (Fallacies of distributed computing), DNS performance, Efficiency - Relative efficiency, Encryption performance, Energy efficiency, Environmental impact, Fast, Filesystem performance, Fortran performance, FPGA, Gbps, Global Interpreter Lock - GIL, Golang performance, GPU - GPGPU, GPU performance, Hardware performance, Hardware performance testing, Hardware stress test, Haskell performance, High availability (HA), Hit ratio, IOPS - I/O operations per second, IPC - Instructions per cycle, IPS - Instructions per second, Java performance (Java data structure performance - Java ArrayList is ALWAYS faster than LinkedList, Apache JMeter), JavaScript performance (V8 JavaScript engine performance, Node.js performance - Deno performance), JVM performance (GraalVM, HotSpot), Kubernetes performance, Kotlin performance, Lag (video games) (Frame rate - Frames per second (FPS)), Lagometer, Latency, Lazy evaluation, Linux performance, Load balancing, Load testing, Logging, macOS performance, Mainframe performance, Mbps, Memory footprint, Memory speed, Memory performance, Memory usage - Memory utilization, Micro-benchmark, Microsecond, Monitoring
Linux/UNIX commands for assessing system performance include:
(Event monitoring - Event log analysis, Google Cloud's operations suite (formerly Stackdriver), htop, mpstat, macOS Activity Monitor, Nagios Core, Network monitoring, netstat-iproute2, proc filesystem (procfs)]] - ps (Unix), System monitor, sar (Unix) - systat (BSD), top - top (table of processes), vmstat), Moore’s law, Multicore - Multi-core processor, Multiprocessor, Multithreading, mutex, Network capacity, Network congestion, Network I/O, Network latency (Network delay, End-to-end delay, packet loss, ping - ping (networking utility) (Packet InterNet Groper) - traceroute - netsniff-ng, Round-trip delay (RTD) - Round-trip time (RTT)), Network performance, Network switch performance, Network usage - Network utilization, NIC performance, NVMe, NVMe performance, Observability, Operating system performance, Optimization (Donald Knuth: “Premature optimization is the root of all evil), Parallel processing, Parallel programming (Embarrassingly parallel), Perceived performance, Performance analysis (Profiling), Performance design, Performance engineer, Performance equation, Performance evaluation, Performance gains, Performance Mantras, Performance measurement (Quantifying performance, Performance metrics), Perfmon, Performance testing, Performance tuning, PowerShell performance, Power consumption - Performance per watt, Processing power, Processing speed, Productivity, Python performance (CPython performance, PyPy performance - PyPy JIT), Quality of service (QOS) performance, Refactoring, Reliability, Response time, Resource usage - Resource utilization, Router performance (Processing delay - Queuing delay), Ruby performance, Rust performance, Scala performance, Scalability, Scalability test, Server performance, Size and weight, Slow, Software performance, Software performance testing, Speed, Stress testing, SSD, SSD performance, Swift performance, Supercomputing, Tbps, Throughput, Time (Time units, Nanosecond, Millisecond, Frequency (rate), Startup time delay - Warm-up time, Execution time), TPU - Tensor processing unit, Tracing, Transistor count, TypeScript performance, Virtual memory performance (Thrashing), Volume testing, WebAssembly, Web framework performance, Web performance, Windows performance (Windows Performance Monitor). (navbar_performance)
Cloud Monk is Retired ( for now). Buddha with you. © 2025 and Beginningless Time - Present Moment - Three Times: The Buddhas or Fair Use. Disclaimers
SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.